Phosphoinositides: tiny lipids with giant impact on cell regulation.
نویسنده
چکیده
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
منابع مشابه
Phosphoinositide signaling: new tools and insights.
Phosphoinositides constitute only a small fraction of cellular phospholipids, yet their importance in the regulation of cellular functions can hardly be overstated. The rapid metabolic response of phosphoinositides after stimulation of certain cell surface receptors was the first indication that these lipids could serve as regulatory molecules. These early observations opened research areas tha...
متن کاملHow Highly Charged Anionic Lipids Bind and Regulate Ion Channels
The modulation of channel activity by direct interaction with membrane lipids is now an emerging theme in ion channel biology. In particular, phosphoinositides such as phosphatidylinositol 4,5-bisphosphate (PIP 2) are known to regulate the activity of most major classes of ion channel, as well as a number of other membrane transport proteins. The regulation of inwardly rectifying (Kir) potassiu...
متن کاملRegulation of membrane trafficking by signalling on endosomal and lysosomal membranes.
Endosomal and lysosomal membrane trafficking requires the coordination of multiple signalling events to control cargo sorting and processing, and endosome maturation. The initiation and termination of signalling events in endosomes and lysosomes is not well understood, but several key regulators have been identified, which include small GTPases, phosphoinositides, and Ca2+. Small GTPases act ...
متن کاملLipids, GTPases, and their regulators in membrane dynamics: an intracellular ménage à trois
Essentially all aspects of eukaryotic cell physiology depend on their compartmentalization and on membrane flux between these compartments mediated by small GTPases and their regulators, as well as by specific membrane lipids (Behnia and Munro, 2005). Talks at the Minisymposium on “Membrane Traffic: Dynamic and Regulation” featured how Rab-and Arf-family GTPases, together with diverse phospholi...
متن کاملA PTEN-related 5-phosphatidylinositol phosphatase localized in the Golgi.
Phosphoinositides play important roles as signaling molecules in different cell compartments by regulating the localization and activity of proteins through their interaction with specific domains. The activity of these lipids depends on which sites on the inositol ring are phosphorylated. Signaling pathways dependent on phosphoinositides phosphorylated at the D3 position of this ring (3-phosph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological reviews
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2013